Ready, Set, Go!

Ready

Topic: Drawing histograms.
Mr. Austin gave a ten-point quiz to his $9^{\text {th }}$ grade math classes. A total of 50 students took the quiz. Mr. Austin scored the quizzes and listed the scores alphabetically as follows.

$1^{\text {st }}$ Period Math	$2^{\text {nd }}$ Period Math	3rd Period Math
$6,4,5,7,5$,	$4,5,8,6,8$,	$9,8,10,5,9$,
$9,5,4,6,6$,	$9,5,8,5,1$,	$7,8,9,8,5$,
$8,5,7,5,8$,	$5,5,7,5,7$	$8,10,8,8,5$
$1,8,7,10,9$		

1. Use the ALL $\mathbf{5 0}$ quiz scores to find the five number summary of all of Mr. Austin's classes.

Minimum:
Quartile 1:
Median:
Quartile 3:
Maximum:
2. Create a box and whiskers plot of ALL the quiz scores.
3. Create a histogram for the data using an interval of 2 on the x-axis.
4. Describe the data distribution of the histogram you created. Include the type, shape, spread, and center.

Set

$1^{\text {st }}$ Period Math	$2^{\text {nd }}$ Period Math	3rd Period Math
$6,4,5,7,5$,	$4,5,8,6,8$,	$9,8,10,5,9$,
$9,5,4,6,6$,	$9,5,8,5,1$,	$7,8,9,8,5$,
$8,5,7,5,8$,	$5,5,7,5,7$	$8,10,8,8,5$
$1,8,7,10,9$		

Using the same data from Mr. Austin's classes as above:
5. Find the mean and median of Mr. Austin's $1^{\text {st }}$ period class. Then add two quiz scores to $1^{\text {st }}$ Period that will keep the median the same, but raise the mean. [Note: the new scores must be whole numbers less than or equal to 10]

Original Mean:	Quiz Scores Added	New Mean:
Original Median:		
		New Median:

6. Find the standard deviation of Mr. Austin's $2^{\text {nd }}$ period class. Then add two quiz scores to $2^{\text {nd }}$ period that will lower the standard deviation. [Note: the new scores must be whole numbers less than or equal to 10]

Original Standard Deviation:	Quiz Scores Added	New Standard Deviation:

Go
Write equations for the following exponential graphs [Hint: These are exponential. Not linear. Don't use $y=m x+b$. DO USE $\left.\boldsymbol{y}=\boldsymbol{a} \cdot \boldsymbol{b}^{\boldsymbol{x}} \odot\right]$

© 2012 Mathematics Vision Project| MVP

